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Math 113 (Calculus 2)
Exam 2
Feb 26 – March 2, 2010

Instructions:

1. Work on scratch paper will not be graded.

2. Should you have need for more space than is allotted to answer a question, use the
back of the page the problem is on and indicate this fact.

3. Simplify your answers. Expressions such as ln(1), e0, sin(π/2), tan−1(1), etc. must be
simplified for full credit.

4. Calculators are not allowed.

For Instructor use only.

# Possible Earned # Possible Earned

M.C. 32 12 8
9 12 13 8
10 12 14 8
11 12 15 8

Total 100



Multiple Choice (32 points). Each problem is worth 4 points. Fill in the answer to each
problem on your scantron. Make sure your name, section and instructor is on your scantron.

1. What is the formula for the arc length of the graph of the function y = f(x), a ≤ x ≤ b.

A.
∫

b

a

√

1 + (f ′(x))2 dx B.
∫

b

a
(1 + (f ′(x))2) dx C.

∫

b

a
(dx2 + dy2) D. None of these.

2. Find the length of the curve x =
y4

8
+

1

4y2
, 1 ≤ y ≤ 2.

A. 2 B. 21

4
C. 17

8
D. 2 1

16
E. 115

16

3. Find the surface area if the curve y =
√

9 − x2, 1 ≤ x ≤ 2 is rotated about the x-axis.

A. 3π B. 4π C. 5π D. 6π E. 8π

4. What is the hydrostatic force on an inverted isosceles triangle aquarium window with
base 2 ft. and height 3 ft. whose top is 3 ft. below the surface of the water if the
density of water is 62.5 lbs/ft3?

3
ft

.

3
ft

.

2 ft.
A. 250 lbs. B. 300 lbs.
C. 400 lbs. D. 500 lbs.
E. 750 lbs. F. 1000 lbs.



5. An isosceles trapezoid is the end of a water trough filled to the top with water. Find
the hydrostatic force on the trapezoid to the nearest pound if the top base is 3 ft., the
bottom base is 2 ft., and the height is 1 ft. The density of water is 62.5 lbs/ft3.

3 ft.

2 ft.

1
ft

.

A. 70 lbs. B. 73 lbs.
C. 77 lbs. D. 81 lbs.
E. 85 lbs. F. 89 lbs.

6. Find the sum of the infinite geometric series 1 +
1

4
+

1

16
+ · · · .

A. 4

3
B. 1.4 C. 1.5 D. 1.6 E. 7

4

7. Find the x coordinate of the centroid of the following system consisting of a rectangle
and a quarter circle.

1

1−1−2
x

y A. −
6

8 + π
B. −

7

8 + π

C. −
13

16 + 2π
D. −

15

16 + 2π

E. −
19

24 + 3π
F. −

20

24 + 3π

8. Use the integral definition of ln x from Appendix G and the midpoint rule with n = 2
to approximate ln 3.

A.
57

60
B.

67

60
C.

77

60
D.

16

15
E.

7

6



Short Answer (36%). Fill in the blank with the appropriate answer. Each problem is
worth 12 points. A correct answer gets full credit. You will need to show your work
for partial credit.

9. (a) If f ′(x) > 0 and f ′′(x) < 0 for a ≤ x ≤ b, Order Ln, Rn, Mn and Tn where Ln is
the left endpoint approximation, Rn is the right endpoint approximation, Mn is
the midpoint rule, and Tn is the trapezoidal rule each using n subdivisions.

< < <

(b) Circle the integrals that converge and put an X over the integrals that diverge.

A.

∫

1

0

dx

x3
B.

∫

∞

1

dx

x3
C.

∫

∞

1

3 + sin 2x

x2
dx D.

∫

∞

1

3 + sin 2x
√

x
dx

(c) If f(x) is a continuous function on the interval 0 ≤ x ≤ 2 and f(0) = 11

2
,

f(1

2
) = 13

4
, f(1) = 11

2
, f(11

2
) = 11

4
, and f(2) = 21

2
, use Simpson’s rule with n = 4

to estimate
∫

2

0
f(x)dx.



10. Determine whether each integral is convergent or divergent. Evaluate those that are
convergent and identify those that are divergent.

(a)

∫

∞

0

xe−x
2

dx

(b)

∫

1

−1

dx

x2

(c)

∫

∞

−∞

dx

x2 + 1

11. Evaluate the following limits if they exist. If the limit does not exist, so state.

(a) lim
n→∞

ln n

n

(b) lim
n→∞

cos
π

n

(c) lim
n→∞

(

1 +
ln 3

n

)n



Show your work for problems 12-15 (32%). Each problem is worth 8 points.

12. Find the centroid of the region between the curves y = x2 and y = 1.

1

1−1
x

y

13. Evaluate the series

∞
∑

n=1

3

n(n + 1)
.



14. A region with area 4 lies in the first quadrant of the x-y plane. When the region is
revolved about the x-axis, it sweeps out a volume of 20π. When revolved about the
y-axis, it sweeps out a volume of 16π. Use the Theorem of Pappus to find the centroid
of the region.

15. Given a series
∞

∑

i=1

ai.

(a) Define sn, the nth partial sum.

(b) Define what it means to write
∞

∑

i=1

ai = s


