Name:
Student ID:
Section:
Instructor:

$\begin{array}{l} Math \ 113 \ (Calculus \ 2) \\ Exam \ 2 \\ {}_{Feb \ 26 \ - \ March \ 2, \ 2010} \end{array}$

Instructions:

- 1. Work on scratch paper will not be graded.
- 2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- 3. Simplify your answers. Expressions such as $\ln(1)$, e^0 , $\sin(\pi/2)$, $\tan^{-1}(1)$, etc. must be simplified for full credit.
- 4. Calculators are not allowed.

For Instructor use only.

#	Possible	Earned	#	Possible	Earned
M.C.	32		12	8	
9	12		13	8	
10	12		14	8	
11	12		15	8	
			Total	100	

Multiple Choice (32 points). Each problem is worth 4 points. Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

- 1. What is the formula for the arc length of the graph of the function y = f(x), $a \le x \le b$. A. $\int_a^b \sqrt{1 + (f'(x))^2} \, dx$ B. $\int_a^b (1 + (f'(x))^2) \, dx$ C. $\int_a^b (dx^2 + dy^2)$ D. None of these.
- 2. Find the length of the curve $x = \frac{y^4}{8} + \frac{1}{4y^2}, 1 \le y \le 2$. A. 2 B. $2\frac{1}{4}$ C. $1\frac{7}{8}$ D. $2\frac{1}{16}$ E. $1\frac{15}{16}$
- 3. Find the surface area if the curve $y = \sqrt{9 x^2}$, $1 \le x \le 2$ is rotated about the x-axis. A. 3π B. 4π C. 5π D. 6π E. 8π
- 4. What is the hydrostatic force on an inverted isosceles triangle aquarium window with base 2 ft. and height 3 ft. whose top is 3 ft. below the surface of the water if the density of water is 62.5 lbs/ft³?

A. 250 lbs.	B. 300 lbs.
C. 400 lbs.	D. 500 lbs.
E. 750 lbs.	F. 1000 lbs.

5. An isosceles trapezoid is the end of a water trough filled to the top with water. Find the hydrostatic force on the trapezoid to the nearest pound if the top base is 3 ft., the bottom base is 2 ft., and the height is 1 ft. The density of water is 62.5 lbs/ft³.

- 6. Find the sum of the infinite geometric series $1 + \frac{1}{4} + \frac{1}{16} + \cdots$. A. $\frac{4}{3}$ B. 1.4 C. 1.5 D. 1.6 E. $\frac{7}{4}$
- 7. Find the x coordinate of the centroid of the following system consisting of a rectangle and a quarter circle.

8. Use the integral definition of $\ln x$ from Appendix G and the midpoint rule with n = 2 to approximate $\ln 3$.

A.
$$\frac{57}{60}$$
 B. $\frac{67}{60}$ C. $\frac{77}{60}$ D. $\frac{16}{15}$ E. $\frac{7}{60}$

Short Answer (36%). Fill in the blank with the appropriate answer. Each problem is worth 12 points. A correct answer gets full credit. You will need to show your work for partial credit.

9. (a) If f'(x) > 0 and f''(x) < 0 for $a \le x \le b$, Order L_n, R_n, M_n and T_n where L_n is the left endpoint approximation, R_n is the right endpoint approximation, M_n is the midpoint rule, and T_n is the trapezoidal rule each using n subdivisions.

<____<

(b) Circle the integrals that converge and put an X over the integrals that diverge.

A.
$$\int_{0}^{1} \frac{dx}{x^{3}}$$
 B. $\int_{1}^{\infty} \frac{dx}{x^{3}}$ C. $\int_{1}^{\infty} \frac{3 + \sin 2x}{x^{2}} dx$ D. $\int_{1}^{\infty} \frac{3 + \sin 2x}{\sqrt{x}} dx$

(c) If f(x) is a continuous function on the interval $0 \le x \le 2$ and $f(0) = 1\frac{1}{2}$, $f(\frac{1}{2}) = 1\frac{3}{4}$, $f(1) = 1\frac{1}{2}$, $f(1\frac{1}{2}) = 1\frac{1}{4}$, and $f(2) = 2\frac{1}{2}$, use Simpson's rule with n = 4 to estimate $\int_0^2 f(x) dx$.

10. Determine whether each integral is convergent or divergent. Evaluate those that are convergent and identify those that are divergent.

(a)
$$\int_0^\infty x e^{-x^2} dx$$

(b)
$$\int_{-1}^{1} \frac{dx}{x^2}$$

(c)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$$

11. Evaluate the following limits if they exist. If the limit does not exist, so state.

(a)
$$\lim_{n \to \infty} \frac{\ln n}{n}$$

(b)
$$\lim_{n \to \infty} \cos \frac{\pi}{n}$$

(c)
$$\lim_{n \to \infty} \left(1 + \frac{\ln 3}{n} \right)^n$$

Show your work for problems 12-15 (32%). Each problem is worth 8 points.

12. Find the centroid of the region between the curves $y = x^2$ and y = 1.

13. Evaluate the series $\sum_{n=1}^{\infty} \frac{3}{n(n+1)}$.

14. A region with area 4 lies in the first quadrant of the x-y plane. When the region is revolved about the x-axis, it sweeps out a volume of 20π . When revolved about the y-axis, it sweeps out a volume of 16π . Use the Theorem of Pappus to find the centroid of the region.

15. Given a series
$$\sum_{i=1}^{\infty} a_i$$
.

(a) Define s_n , the *n*th partial sum.

(b) Define what it means to write
$$\sum_{i=1}^{\infty} a_i = s$$